OTREC turned its education efforts on a decidedly younger crowd March 13: sixth graders. A class from Rochester, N.Y., visited Portland on a trip geared toward improving bicycling in their own community.

The students, from Genesee Community Charter School, visited the OTREC offices to learn about active transportation research methods. They took part in group exercises designed to get them thinking about the planning and engineering challenges of transportation systems set up to serve multiple transportation modes.

The highlight of the day came when the students took to Portland’s streets — OTREC’s living laboratory — to conduct research of their own. Armed with bicycle-counter tubes and infrared detectors, students counted cyclists and pedestrians passing on the Broadway cycle track on Portland State University’s campus.

Other students verified the technology with manual counters.

Students moved on to their next stop on a four-day tour of Portland with a better sense of what kind of data researchers collect and how they can use those data to inform policy. Given their experience — the students already have influenced their city on policy ranging from Erie Canal re-watering to an urban art corridor to skate parks — they stand a good chance of using Portland’s lessons to build a bike-friendly Rochester.

This fall, the Friday transportation seminar series at Portland State University has focused on data collection and how information is used to make transportation investments. The Oct. 26 seminar, with the University of Minnesota’s Greg Lindsey, covered tracking and modeling travel behavior.

Engineers and planners alike have relied on traffic counts for their traffic models, but data behind bike and pedestrian travel has been fuzzy. Now, researchers such as Lindsey are offering new methods for conducting bike and pedestrian counts on trails and multiuse paths.

With little guidance from the Federal Highway Administration, Lindsey said, most of the efforts in creating best practices have bubbled up from communities like the Twin Cities, chosen as Nonmotorized Transportation Pilot Cities. Lindsey and his researchers monitored six trails in Minneapolis, using inductive loops and infrared beams.

To address calibration problems and offer validity to their field numbers, Lindsey also sent students into the field to verify counts. The technology allowed for finer-grained detail, especially over a 24-hour period. OTREC Director Jennifer Dill noted, “Too much in the past we’ve lumped “bike and peds” together and your work and analysis is demonstrating that they truly are different modes, with different behaviors.”

Lindsey stressed the importance of conducting this type of research, and measuring our “bicycle miles traveled” and “pedestrian miles traveled” in...

Read more

If you weren’t one of the 10,000 people who attended the Transportation Research Board’s Annual Meeting in January, there are fifty students and twenty faculty for PSU, UO, OSU and OIT who can tell you what they learned there.  OTREC's bright yellow lanyards made our presence especially visible! PSU student Brian Davis blogged about his experience, OTREC’s Jon Makler was interviewed in a local newspaper, and the Oregon “delegation” at the conference was covered by both local and national blogs. Team OTREC filed some daily debriefs, highlighting presentations on topics such as federal stimulus investments in Los Angeles and Vermont’s efforts to address their transportation workforce crisis with returning military veterans (as well as the...

Read more

The video begins at 2:21.

Abstract:

Adaptive signal systems have been deployed in a number of locations across the country though their high maintenance requirements and additional cost have limited their widespread use. Adaptive systems adjust phases and timings at a network of signals in real time to improve traffic operations, particularly along congested corridors.

Rhythm Engineering has developed a new video detection-based system that vastly reduces the cost of deployment and maintenance. However, no existing microsimulation software could model the system due to its innovative methodology.

The methodology involves doing away completely with concept of cycle lengths, splits, and offsets, key parameters use in traffic signal analysis today. HDR and Rhythm Engineering joined together to develop a tool to act as middleware between the adaptive system and VISSIM that would emulate video detection, send the "video" to the adaptive controller, run the adaptive controller algorithm, and transmit detector calls back to VISSIM for inclusion in the model.

This presentation will discuss the lessons learned in the development of the emulation of video detection within VISSIM as well as showing the improvements in traffic operations provided by the system. It will also discuss the implications of the system's architecture and the impact it will have on not only adaptive signal systems...

Read more

Watch video

View Nicholas Stoll's presentation slides

View Nicholas Kobel's presentation slides

Nicholas Stoll, Graduate Research Assistant, Portland State University

Topic: Utilizing High Resolution Bus GPS Data to Visualize and Identify Congestion Hot-spots in Urban Arterials

The research uses high resolution bus data to examine sources of delay on urban arterials. A set of tools were created to help visualize trends in bus behavior and movement, which allowed for larger traffic trends to be visualized along urban corridors and urban streets. By using buses as probes and examining aggregated bus behavior, contoured speed plots were used to understand the behavior of roadways outside the zone of influence of bus stops. These speed plots can be utilized to discover trends and travel patterns with only a few days’ worth of data. Congestion and speed variation can be viewed by time of day and plots can help indicate delays caused by intersections, crosswalks, or bus stops.

This type of information is important to transit authorities looking to improve bus running times and reliability. Congested areas can be detected and ranked. Speed plots...

Read more

The video begins at 1:19.

View slides

Summary: Where and when does overcrowding happen on TriMet's bus network? Which routes have the best on-time performance? Portland State University and TriMet have collaborated to make this kind of data available to anybody through Portal, PSU's transportation data archive for the Portland/Vancouver region. This presentation will cover the use of General Transit Feed Specification (GTFS) data for mapping TriMet’s performance data and the development of Portal’s innovative transit application. In the MAP-21 era of performance management, see how tools like Portal can support enhanced agency decision-making as well as community engagement.

Bio: Jon Makler researches and teaches about transportation planning and engineering at Portland State University. His research portfolio centers on intelligent transportation systems, including how they can be harnessed to benefit the environment and how the data they generate can support operational strategies and planning decisions. Since moving to Oregon 9 years ago, he has worked at Metro, the City of Portland and OTREC, the federally-funded research center housed at PSU. His previous employers were the North Jersey Transportation Planning Authority, the Harvard Kennedy School, IBI Group and Sarah...

Read more

View slides

The video begins at 2:53.

Abstract: The concept of accessibility has long been theorized as a principal determinant of household residential choice behavior. Research on this influence is extensive but the empirical results have been mixed, with some research suggesting that accessibility is becoming a relatively insignificant influence on housing choices. Further, the measurement of accessibility must contend with complications arising from the increasing prevalence of trip-chains, non-work activities, and multi-worker households, as well as reconcile person-specific travel needs with household residential decisions. This paper contributes to the literature by addressing the gap framed by these issues and presents a novel residential choice model with three main elements of innovation. First, it operationalized a time-space prism (TSP) accessibility measure, which the authors believe to be the first application of its kind in a residential choice model. Second, it represented the choice sets in a building-level framework, the lowest level of spatial disaggregation available for modeling residential choices. Third, it explicitly examined the influence of non-work accessibility at both the local- and person-level. This residential choice model was applied in the...

Read more

View Andy Kading's slides

View Patrick Singleton's slides

Watch video

Andy Kading, Graduate Student Researcher, Portland State University

Topic: Managing User Delay with a Focus on Pedestrian Operations

Across the U.S, walking trips are increasing. However, pedestrians still face significantly higher delays than motor vehicles at signalized intersections due to traditional signal timing practices of prioritizing vehicular movements. This study explores pedestrian delay reduction methods via development of a pedestrian priority algorithm that selects an operational plan favorable to pedestrian service, provided a user defined volume threshold has been met for the major street. This algorithm, along with several operational scenarios, were analyzed with VISSIM using Software-In-The-Loop (SITL) simulation to determine the impact these strategies have on user delays. One of the operational scenarios examined was that of actuating a portion of the coordinated phase, or actuated-coordinated operation. Following a discussion on platoon dispersion and the application of it in the design of actuated-coordinated signal...

Read more

Pages